
• Formalize C’s Static Typing Semantics

• Construct Tool Around Formal Static Typing Semantics

• Prove Assumptions Made About Both are Correct

On Designing an ACL2-Based

C Integer Type Safety Checking Tool
Kevin Krause and Jim Alves-Foss,

Center for Secure and Dependable Systems, University of Idaho

• if(x > -10) { // do something important }

– C source code
– x represents a positive integer between 1 and 10 inclusive

• Truth is Dependant on the Integer Type of x

– If x is an unsigned int type, then ‘’do something

important’’ would not be executed

– If x is an unsigned integer type with a smaller precision than that

of an unsigned int,, then ‘’do something important“ would

be executed

Consider the Truth Value

Integer Error Conditions

Example Output

• Type Strength
– A language characteristic based on the amount of coercion (casting)

permitted and performed among its data types

 Less coercions = stronger typing

– Coercion is generally performed during compile time to insure

compatibility of operator and operand types

– C integer coercions are rule based

 Integer ranking

 Integer promotion rules

 Usual arithmetic conversions

– C does not support valid range checking during the coercion process

• Type Safety

– A program property of being free from unexpected results

 Unexpected results = compromised system state

 Compromised system state = vulnerable to attacks and/or

failure
 Denial of Service

 Execution of Arbitrary Code

 Escalation of Privileges

C is Weakly Typed and is Not Type Safe

• Overflow/Underflow
– Occurs whenever the value of an integer type is increased or

decreased beyond the type’s valid value range
 unsigned integers silently wrap

 behavior for signed integers is undefined

• Sign error
– Occurs whenever the meaning of the high order bit is lost

 A precision bit

 A sign bit

• Truncation Error
– Occurs during the coercion from a larger type to a smaller type and

the high order bits are truncated
 11111111 → 1111

ACL2

• Syntax of Types
– < c_type > := < object-type > | < function-type >

 | < incomplete-type >

 < scalar-type > := < arithmetic-type > | < pointer-type >

– Shows subtyping relationships necessary for C coercion rules

• Typing Inference Rules Based on Operator/Operand

Constraints
– Typing judgments of the form Γ ⊢ 𝐸 : θ

 Where 𝐸 is an expression, Γ is the type environment, and θ is the
type attributed to 𝐸

– For example, the multiplicative division operation

 Γ ⊢ e1 : exp[τ1] Γ ⊢ e2 : exp[τ2]
isArithmetic(τ1) isArithmetic(τ2)

 τ’ ::= arithConv(τ1, τ2)

Γ ⊢ e1 / e2 : exp[τ’]

Static C Typing Semantics

• char c1;

 int i1 = 64;

 c1 = i1 * 2;

• ((EXPSTMT (ASSN (ID “c1” 2)

 (MULT (ID “i1” 3)(LIT 2)))

 (LINE 3))

 (2 (“c1”)((CHAR)(NOQUAL)(NOSTORE)

 (128) (“Error: exceeds value range of type”

 CHAR))))

Tool Functionality

• Input AST and .symtab from c2acl2 Translator

• First Pass:
– Extract, model, and model declarations

 (SYM (“NAME”)((TYPE)(QUAL)(STORE))(VALUE))

 updatable lookup table

• Second and Subsequent Passes:
– Analyze Expressions and Statements

 Check operator/operand compatibility
 If error found, issue and append error statement

 Check promoted operand values
 If error found, issue and append error statement

 If an assignment expression
 Evaluate RHS first and LHS second

 If new LHS value can be determined, validate value and add to

lookup table

 If value cannot be determined, issue a conditional

warning

 If value is in error, append error statement which

remains until next assignment statement.

• Proof Generation

Project Tasks

• A Computational Logic
– First order theorem prover

• Applicative Common Lisp
– Non-destructive programming language

